
• Formalize C’s Static Typing Semantics

• Construct Tool Around Formal Static Typing Semantics

• Prove Assumptions Made About Both are Correct

On Designing an ACL2-Based

C Integer Type Safety Checking Tool
Kevin Krause and Jim Alves-Foss,

Center for Secure and Dependable Systems, University of Idaho

• if(x > -10) { // do something important }

– C source code
– x represents a positive integer between 1 and 10 inclusive

• Truth is Dependant on the Integer Type of x

– If x is an unsigned int type, then ‘’do something

important’’ would not be executed

– If x is an unsigned integer type with a smaller precision than that

of an unsigned int,, then ‘’do something important“ would

be executed

Consider the Truth Value

Integer Error Conditions

Example Output

• Type Strength
– A language characteristic based on the amount of coercion (casting)

permitted and performed among its data types

 Less coercions = stronger typing

– Coercion is generally performed during compile time to insure

compatibility of operator and operand types

– C integer coercions are rule based

 Integer ranking

 Integer promotion rules

 Usual arithmetic conversions

– C does not support valid range checking during the coercion process

• Type Safety

– A program property of being free from unexpected results

 Unexpected results = compromised system state

 Compromised system state = vulnerable to attacks and/or

failure
 Denial of Service

 Execution of Arbitrary Code

 Escalation of Privileges

C is Weakly Typed and is Not Type Safe

• Overflow/Underflow
– Occurs whenever the value of an integer type is increased or

decreased beyond the type’s valid value range
 unsigned integers silently wrap

 behavior for signed integers is undefined

• Sign error
– Occurs whenever the meaning of the high order bit is lost

 A precision bit

 A sign bit

• Truncation Error
– Occurs during the coercion from a larger type to a smaller type and

the high order bits are truncated
 11111111 → 1111

ACL2

• Syntax of Types
– < c_type > := < object-type > | < function-type >

 | < incomplete-type >

 < scalar-type > := < arithmetic-type > | < pointer-type >

– Shows subtyping relationships necessary for C coercion rules

• Typing Inference Rules Based on Operator/Operand

Constraints
– Typing judgments of the form Γ ⊢ 𝐸 : θ

 Where 𝐸 is an expression, Γ is the type environment, and θ is the
type attributed to 𝐸

– For example, the multiplicative division operation

 Γ ⊢ e1 : exp[τ1] Γ ⊢ e2 : exp[τ2]
isArithmetic(τ1) isArithmetic(τ2)

 τ’ ::= arithConv(τ1, τ2)

Γ ⊢ e1 / e2 : exp[τ’]

Static C Typing Semantics

• char c1;

 int i1 = 64;

 c1 = i1 * 2;

• ((EXPSTMT (ASSN (ID “c1” 2)

 (MULT (ID “i1” 3)(LIT 2)))

 (LINE 3))

 (2 (“c1”)((CHAR)(NOQUAL)(NOSTORE)

 (128) (“Error: exceeds value range of type”

 CHAR))))

Tool Functionality

• Input AST and .symtab from c2acl2 Translator

• First Pass:
– Extract, model, and model declarations

 (SYM (“NAME”)((TYPE)(QUAL)(STORE))(VALUE))

 updatable lookup table

• Second and Subsequent Passes:
– Analyze Expressions and Statements

 Check operator/operand compatibility
 If error found, issue and append error statement

 Check promoted operand values
 If error found, issue and append error statement

 If an assignment expression
 Evaluate RHS first and LHS second

 If new LHS value can be determined, validate value and add to

lookup table

 If value cannot be determined, issue a conditional

warning

 If value is in error, append error statement which

remains until next assignment statement.

• Proof Generation

Project Tasks

• A Computational Logic
– First order theorem prover

• Applicative Common Lisp
– Non-destructive programming language

